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FOR WING-FUSELAGE COMBINATIONS WITH WINGS
OF ARBITRARY PLAN FORM!

By Martin Zlotnick and Samiel W. Robinson, Jr.
SUMMARY

For the purpose of calculating the aerodynamic loading on the
fuselage, the midwing wing-fuselage combination with a fuselage of cir-
cular cross section can be represented by a simple system of horseshoe
vortices located on the wing with images located inside the fuselage.

By using this simplified mathematical model or the extension of it given
in an appendix for nommidwing configurations with fuselages of arbitrary
cross section, a method for calculasting the 1ift and longitudinal center
of pressure on the fuselage in the presence of the wing at subsonic
speeds is presented.

In addition the report shows how the simplified mathematicel model
can be used for calculating the downwash behind the wing and for calcu-
lating the spanwise 1ift distribution on the wing for midwing configura-
tions with axisymmetric fuselages.

INTRODUCTION

Mutusl interference between wing and fuselage has a significant
effect on the pltching moment of the wing-fuselage combination, since
the longltudinal distribution of the aerodynamic loading on the fuse-
lage is altered by the presence of the wing. Multhopp (ref. 1) has
developed a theoreticael method for calculating the pitching moment on
wing-fuselage combinations with unswept wings which gives good agree-
ment with experimentel results. However, for calculating the pitching
moment on swept-wing configurations, only semiempirical methods such
as that of reference 2 are available.

lgupersedes the recently declassified NACA RM 152J27a, A Simpli-
fied Mathematical Model for Calculating Aerodynamic Loading and Downwash
for Midwing Wing-Fuselage Combinations With Wings of Arbitrary Plan Form'
by Martin Zlotnick and Ssmuel W. Robinson, Jr., 1953.
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The serodynamic loading on the fuselage in subsonic flow is con-
gidered in references 1 and 2 to be made up of two parts. The first
part, which is due to the fuselage angle of attack resulting from both
the geometric angle of attack of the fuselage and the upwash angle
induced by the wing, has been calculated in reference 1 for unswept-
wing configurations and modified in reference 2 for the swept-wing
case. The se%ond part, which is often referred to as the wing 1ift

carried over by the fuselage (and which will be referred to in this
paper as the "{nduced lift"), has been calculated analytically for the
unswept-wing case in reference 1. However, for swept wings this calcu-
lation cannot be applied and no other theoretical method has been avail-
able. In reference 2 this component of loading is estimated by an
empirical method.

In order to calculate the induced 11ft on the fuselage in combina-
tion with a wing of arbitrary plan form, a method is suggested in the
present ?aper which 1s based on Lennertz' theoreticel work (ref. 3).
Iennertz results, which are .concerned only with an unswept 1lifting
line passing through the axls of an infinitely long cylindrical fuselage,
are, in effect, generalized so that for midwing configurations in sub-
sonic flow the magnitude, lateral distribution, and longitudinal center
of pressure of the induced 1ift on an axisymmetric fuselage combined
with a swept 1lifting line, or even a lifting surface, can be calculated.
An extension of this method to conflgurations with arbitrary fuselage
cross section and wing location is described in appendix A. This exten-
sion is based on a result of Flax (ref. 4) and permits the calculation
of the magnitude and longitudinal center of pressure of the 1nduced
1ift, but not its lateral distribution. A numerical exemple is given
in appendix B to illustrate the Induced-1lift calculations. The effect
of finite fuselage length is estimated qualitatively from results of an
approximate calculation of the variation with fineness ratio of the
induced 1lift on an ellipsoid of revolution combined with an infinite
vortex. The approximate calculation is shown to give results which
agree with results of Vandrey (ref. 5).

In calculating the induced 1ift on the infinitely long fuselage
with a circular cross section, the wing-fuselage combination 1s replaced
with a simple system of horseshoe vortices (or doublets) on the wing,
with imsges inslde the fuselage. This representatlion mey be used, with
some modifications, in calculating the 1ift on the wing for a midwing
configuration with a fuselage of circular cross section and also the
corresponding downwash. However, for calculating the downwash and the
1ift on the wing, the simpliflied representation of the wing-fuselage
combination, although 1t is considered to be adequate, is no longer
rigorous, and the general applicability will depend on experimental
verification.
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SYMBOLS

A aspect ratio (wing alone)
a maximm radius of body of revolution
b wing span
c wing chord
c mean chord, 8/b
cy local 1lift coefficient
d major axis of ellipsold of revolution

total 1ift on fuselage
m number of horseshoe vortices
D static pressure
Po free-stream static pressure
q dynamic pressure

wing area (wing alone)
8 semigpan of bound leg of horseshoe vortex
Uo free-gtream velocity
Unex maximum longitudinal velocity on surface of body
Xep longitudinal center of pressure
r vortex strength
p mass density of air
X,¥,2 longitudinal, lateral, and verticel ordinates, respectively
u,v,w longitudinal, lateral, end vertical velocities, respectively
Zh helght of plane of wing above fuselage axis
Subscripts:
a downwash point

1

on lower surface
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n particular pair of horseshoe vortices
u on upper surface
Superscripts:

! dimensionless with respect to a
* dimensionless with respect to b/2

A bar over a symbol denotes that the quantity i1s dimensionless
with respect to s.

BASIC CONSIDERATIONS

Midwing Configurations With Axdsymmetric Fuselages

In the major part of the analysis the fuselasge is assumed to be an
infinite cylinder. To obtain a qualitatlve estimate of the effect of
the finite fuselage length, the variation with fineness ratio of the
1lift on an ellipsoid of revolution with a wing of infinite span will be
calculated approximately in a subsequent Section. An approximate method
for making the small correction for this effect will be indicated.

Review of results obtained by Lennertz.- Lennertz (ref. 3) has
calculated the lateral and longitudinal 1ift distribution on the fuse-
lage of an idealized wing-fuselage configuration, in which the fuselage
is represented by an infinite circular cylinder and the wing by a vortex
having constant spanwise circulation. The vortices trailing from the
wing tips have images inside the cylinder, and the bound wvortex is
extended inside the cylinder to join the trailing image vortices as
shown in figure 1. With this configuration, the boundary conditlion of
zero velocity normal to the surface of the cylinder 1is satisfled only
at infinity and in the plane normal to the cylinder axis which passes
through the vortex, so that it is necessary to superpose an additional
potential, which is calculated in reference 5. For this case the lat-
eral 1lift distribution is obtained by considering the momentum change
in a vertical plane infinitely far behind the wing, and the longitudinal
1ift distribution is obtained by the use of Bernoulli's equation.

Induced 1ift on infinite cylinder with finite wing having constant
spanwise distribution of circulation.- In this section the fuselage
1ift Ly end its lateral distribution dlLg/dy are shown to be unaffected
by the additional potential, so that only the components of Le and

dLg/dy due to the vortex potential need be calculated.
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With all other singularities neglected, the 1lift on a longitudinal
gsection of the cylinder dy (see fig. 1) due to the vortex potential
is calculated as follows:

The pressure p of any polnt on the surface of the cylinder can
be written

D = Do + %p[ZUO + M) AR+ Amé]

where Au, Av, and Aw are, respectively, the longitudinal, lateral,
and vertical components of velocity induced by the vortices. The sec-
tion 1ift dLp/dy is then written

where p, and p; are the pressures on the upper and lower surfaces,
respectively. Then

%=2puofmm& » (1)

Only the velocities induced by the bound vortex contribute to the 1ift.

It mey be noted that, since the distribution of the longitudinal
velocities induced by the bound vortex is symmetrical about its axis
at every section dy, the longitudinal center of pressure of the 1ift
due to the vortex potential is on the axis of the bound vortex.

A closed expression for the integral in equation (1) may be readily
derived as follows: Consider the rectangular path indicated by the
dashed line in the upper right sketch in figure 1 and the cross section
downstream at infinity shown in the lower right sketch of the same fig-
ure. The line integral :#Lﬁu ds of the tangential velocity component

taken around the complete rectangle must be I' where the path links

2 _
b/e
where 1t does not link one of the horseshoe vortices <é < |y} <

one of the horseshoe vortices ( < Iy] < Ial), and must be zero

)

Then the desired integral in equation (1), which is the longitudinal
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portion of the complete line integral.\#ﬁ&u ds, must equal.\?gﬂu ds
minus the line integral along the short vertical line at infinity
A
JF Aw(w,y,z)dz, where u refers to the upper surface and 1 refers
u

to the lower surface. That is,

© 1
o[ max=gmas- [ moyna (2)
=00 u
Since
of
AW = - oL
oz
then
1
[ swan-gu -0
u
where ¢u and ¢Z are the potentials on the upper and lower surfaces,
' 2
respectively, in the plane x = o. When %75 <yl < |al,
o = -
T fig-1 V82 - 32 1 Va2 - 32 —1@4.1;@-1___“2'2
b b a a
Yy - y + - —
2 2 b/2 ARy
b,/a_ 2
b\E _ 2
2
and.
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and vhen O < |y|<

2
27—' the strength of the image vortex located at
b/2

P db
—— 8 ncrease f |
b/2 v
¢y = -9
Va2 _y2 2 Va2 _ 2
= Lltan-1 B2-y2 . 1 Ve2-y2 [ -1 VeE-ye) -1 Ves-y
b 2 2
y=-5 y+3 -8= v+ &
b/2 b/2
E‘/z_ 2
1 22 a v »
== T a_n"l -
b1 _b2 o 2
(8) -
and

P as = 0

Then, from equation (2), the lateral 1ift distribution of the induced
1ift can be written :

dLe _ 2 -1
3 = PUol|l - = tan Fa———; (-a <y < a) (3)
= - g .
2
and after integration over Yy,
= 20U " (&)
Le = 200002 - o735

These expressions are the same, except for the difference in notation,
a8 the expressions obtained in reference 3 for dlf/dy and the total
fuselage 1ift L. The components of Lp and dLp/dy due to the addi-

tional potential must therefore be zero.
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The longlitudinal 1ift distribution on the cylinder calculated in
reference 3, which includes the effect of the additional potential as
well as the vortex potential, is slightly different from that which
would be calculated by teking into account the effect of the vortex
potential alone. However, both distributions are symmetrical about
the axis of the bound vortex. The longitudinal center of pressure of
the 1ift due to the vortex potential must be at the bound-vortex axis
because the longitudinal velocities induced on the surface of the
cylinder by the bound vortex are the same In front and in back of the
bound vortex, as noted previously. That the longitudinal center of
pressure of the 1lift due to the vortex potential and the additional
potential must be at the axis of the bound vortex is indicated by the
calculations of reference 3 (although not explicitly stated) and can be
shown as follows:

Superposition of infinite vortices canceling the semi-infinite
trailing vortices of figure 2(a) as shown in figure 2(b) will not change
the longitudinal 1ift distribution on the cylinder, since no longltudinal
velocities are induced. It i1s apparent that the system is the same as
before, with the direction of the trailing legs of the horseshoe vortices
reversed; therefore, the longitudinal distribution on the infinite
cylinder must be symmetrical about the axis of the bound vortex, since,
if it were not, the longitudinal 1ift distributions on the cylinders in
figures 2(a) and 2(b) would be different.

From the analysis in this section of the wing and cylinder combina-
tion it can be seen that, for calculating the 1ift on the cylinder, its
lateral distribution, and the longitudinal center of pressure, only the
effect of the vortex potertial need be considered. This 1ift due to the
vortex potential will be referred to hereinafter as the "induced 1ift."

Simplified representation of wing-fuselage combination.- In this
paper, the wing-fuselage combination will be represented by a system of
discrete horseshoe vortices and images, so that configurations with
wings of arbitrary plen forfm mey be treated. It is necessary to super-
pose two pairs of horseshoe vortices of the types shown in figures 1
and 3 to obtain the vortex-image system of figure 4. The vortex-image
system of figure 4 can be used to represent wings of arbitrary plan
form in the manner shown in figure 5 by locating the bound vortices on
the wing quarter-chord line or by distributing them over the wing sur-
face. Since the discrete horseshoe vortex becomes a doublet line as
the length of the bound leg approaches zero, it is also possible to
represent the wing by a continuocus distribution of doublets.

Figure 3 shows the larger pair of vortices with span 2(y, + 8)
and strength +I' near the smaller pair of span 2(yh - 5) and
strength -I'. When the bound legs of the smaller are moved to coincilde
with the bound legs of the larger, the net vortex strength along the
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section where they coincide is zero, and the remaining sections of the
larger bound legs form the bound legs of the desired system (see fig. 4).
From equations (3) and (4), the lateral distribution of the induced 1ift
and the total induced 1ift for the vortex-image system shown in figure L
are given by the following expressions:

(illf) ccz 2l -1 1 20y - s)\/az - y@ el 2(yn + 8)\R2 - ¥2

n T (yq - 8)° - &2 (yq + 8)° - a2
(5)
NI ccl) gl
(3, F = ©

cc
where (T:l> is the loading coefficient on the wing at the station yn.
C/n

Since it i1s known that the longltudinal center of pressure of the
induced 1lift for each pair of horseshoe vortices and images 1s still
located at the axis of the bound vortex, it 1s possible by superposition
to calculate the pitching moment on the fuselage in the presence of a
wing of arbitrary plan form 1f the 1lift distribution on the wing 1is
known, although the complete longitudinel 1ift distribution cannot be
calculated unless the component of loading due to the additional poten-
tisl is calculated. The total induced 1ift and its lateral 1ift dis-
tribution can also be calculated by superposition. The method for
calculating the total induced 1lift and its lateral distribution and
longitudinal center of pressure is discussed in a subsequent section,
and an illustrative example is given in appendix B.

Effect of Finite FTuselage Iength on Induced ILift

In order to obtain an estimate of the error involved in the assump-
tion of the foregoing analysis that the fuselage is infinitely long, an
approximate calculation will be made of the effect of fineness ratio on
the induced 1ift of an ellipsold of revolution combined with an infinite
vortex. The limiting case of the spherical fuselage is treated first in
the manner of Vandrey (ref. 5), and then the general case 1s treated.
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Lift on a combination of sphere and infinite vortex.- The potential
of the sphere combined with an infinite vortex (fig. 6(a)) is written

% = (7)

where the potential for the sphere in the free stream is

) 1
¢1—UOXl+2

(8)

ad
<\/x2 + y2 + z2>3j|

and the potential for the vortex is

The 1ift on a section of the sphere in the plane y = Constant is

e (py - pplax (10)

Where Py and p; are the pressures on the upper and lower surfaces,
respectively. From Bernoulli's equation,

p=po+-2]=p[_(__u+Au)2+(v+Av)2+(W+Aw)2___| (11)

and
Py - Py = 20(u Au + w Aw)
where Au, Av, and Aw are the velocities induced by the vortex on the

upper half of the sphere and u, v, and W are the local velocities on
the surface of the sphere. Thus
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—_
=L _2z =L x
S - A= o - 52
f (12)
_ 3 a2 - x2 _ >3 Xz
u—EUO-—aE———— W—-é'Uo—a—E
~
The 1ift on the section at y = Constant 1s
2-y2
pU
mrme e o
ac -
- 2—y2
which may be written in the form
: £(y) ’
__dl'f=pumaxf 2 M dx (14)
dy -£(y)
since
_ I Z
fa = ox a2 - y2
and since
u = Unax
when x = 0, so that
_3y
UII].B.X-EO

For an infinite cylinder with an infinite vortex, equation (14) will also
hold. In this case

Unax = Uo
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r
B g2 - 32 4 x2

£(y) =

From equation (13) or (14) the 1ift obtained for the sphere is

and for the cylinder

Equation (14) gives the exact result for the case of the sphere
with an infinite vortex and the same result as the method of reference 3
for the case of an infinite cylinder with an infinite vortex. There-
fore, equation (14) presumsbly would glve a qualitative estimate for
the intermediate case of an ellipsoid of revolution having a flneness
ratio between 1 and infinity. This assumption is made in the following
section and the value obtained for the induced 1ift by using equation (1k4)
is shown to be very close to that obtained by the more accurate mathe-
matical treatment of Vandrey (ref. 5) for the case of an ellipsoid
having a fineness ratio of 5.

Iift on a combinagtion of ellipsoid and infinite vortex.- The local
1ift on the ellipsoid is given by equation (1k):

dLe £(y)
5 - pUme[f(y) 2 M dx

From figure 6(b),

£(y) = a\f1 - (%)2 | (15)
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o - (@ - @)

=1 6
M = - - (16)
2 20 - (LY - (X
24 a [ () (d)]
The integration indicated in equation (1) yields
- s
1 Lf= mB.X/EQ (17)

pULT &y l+%

The values of Umax/Uo given as a function of the fineness ratio in
reference 6 are shown in figure 7.

1_ dLe against d/a. The result of a

pUSI dy a
calculation from reference 5 for the case of an ellipsoid with 7= 5
falls near the curve in figure 8. Since the calculations of reference 5
appear to be accurate to 0.05, the agreement may be even better than is
indicated in figure 8. The results of reference 5 are obtained by dif-
ficult computations for each body separately, and the method does not
yield a general expression similar to equation (1T7).

Figure 8 shows a plot of

Figure 8 indicates that the induced 1lift on the ellipsoids having

high fineness ratios (%.> 5) is about 90 percent of the induced 1ift on

the Infinite cylinder. Since the fuselage is similar in effect to a
semi-infinite cylinder because of the wake which extends behind it, the
loss in 1ift due to the finite fuselage length is about half of that
indicated by the calculation for the ellipsoid of revolution. The value
of induced 1lift obtained by assuming the fuselage to be an infinite

cylinder may be multiplied by the factor 2(% + Unexx/Uo ) to correct for
1+
H
the finite fuselage length in the presence of an infinite wing; however,
this approximate correction can often be neglected since it is nearly
unity for most practical fineness ratios. Since the correction is small,
it is assumed that it may be applied directly for the finite-wing case

Unax/Uo

without introducing significant error, so that the factor E l4+y —— —
1+ =2
d

is to be multiplied by equations (5) and (6) to correct for finite
fuselage length.

A — -~ -
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APPLICATION OF SIMPLIFIED MATHEMATICAL MODEL TO CALCULATION

OF AERODYNAMIC LOADING AND DOWNWASH

In the following sections, the method for calculating the induced
1lift will be described and discussed, and methods for calculating the
spanwise loading on the wing and the downwash will be outlined. The
methods for calculating the downwash and spanwise 1lift distribution are
not rigorous since the effect of the additionel potential, which has
not yet been calculated, must be approximated by a simple correction.
Although the validity of the correction must depend on experimental
verification, it is believed to be adequate, and the exact value of
the additional potential may be incorporated into the method immediately
when it is calculated.

Method for Calculating Induced Lift on Fuselage

If the 1ift distribution on the wing in the presence of the fuse-
lage is known, sey from reference 7 (see fig. 9) or the method outlined
in the following section, the induced 1ift may be calculated very simply.
For midwing configurations with fuselages of circular cross section,
equations (5) and (6) are used to calculate the magnitude of the induced
1ift, its lateral distribution, and its longitudinal center of pressure,
as shown in eppendix B. For configurations with arbitrary cross section
and wing location, the results of appendix A must be used. The method
of appendix A, however, will not give the lateral distribution of the
induced 1lift.

A semple numerical calculation is shown in sppendix B for the mid-
wing configuration with the circular fuselage. It is necessary only to
substitute into equations (5) and (6) the value of loading coeffi-

ce

cient f:l for each of the discrete horseshoe vortices. The values of
c . dLe

the increments of the lateral 1ift distributions A —= on the fuselage

due to all of the horseshoe vortices and their imagegyobtained from
equation (5) are superposed to get the complete lateral 1ift distribu-
tion dLp/dy. The increment of total 1ift ALp for each pair of horse-
shoe vortices and images acts at the bound-vortex axis, and the longi-
tudinal center of pressure of the total 1lift Ly 1is obtained simply by
dividing the sum of the moments of the incremental total lifts ALy Dby

the total 1ift L (the sum of the increments AlLg).

In calculating the longitudinal center of pressure of the induced
1ift, the bound legs of the wing horseshoe vortices should be located
at the section center of pressure. Since the present methods do not
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provide a means for calculating the chordwise 1ift distribution on the
wing in the presence of the fuselage, the section centers of pressure
were assumed to lie on the wing quarter-chord line as in approximate
calculations of the aerodynamic center of the wing alone. However, a
better approximation to the longitudinal center of pressure of the
induced 1ift may be obtained by assuming that near the wing-fuselage
juncture and near the wing tip the spanwise variation of the section
center-of-pressure location is the same as that near the root and tip
of the wing alone as determined from measurements or lifting-surface
calculations. Curves in reference 8 showlng the .spanwise variation of
gectlon center of pressure for several wing plan forms msy serve as a
gulde for estimating the wing-alone values to be used in preliminary
calculations.

The results of the calculation for the laterasl distribution of
induced 1lift and the longitudinal center of pressure carried out in
appendix B are presented in figures 10 and 11, respectively. TFigure 11
shows the increment of total 1lift ALp contributed by each pair of
vortices and images and it can be seen that the contribution to the
total 1ift Lp due to the outboard part of the wing (the components
farthest to the right in the figure) is small compared with the con-
tribution of the inboard part of the wing. The induced 1ift on the
fuselage has also been calculated by using the wing-alone spanwise
1lift distribution shown in figure 9; that is, the effect of the fuse-
lage on the wing 1s neglected. It can be seen in figureg 10 and 11
that, although there is about a 1l0-percent increasse in the magnitude
of de/iy and Lp due to the effect of the fuselage on the wing,

the lateral and longitudinal load distribution on the fuselage is prac-
tically unaffected. The correction for finite length has not been
included in the calculations. This correction would decrease the
magnitude of the 1ift, but it would not alter the lateral or longi-
tudinal distribution.

The total 1ift and moment on the fuselage can be obtained by
adding the components of 1lift and moment due to the induced 1ift to
the components of 1lift end moment due to the local angle of attack of
the fuselage (which can be calculated as shown in ref. 2). The 1lift
and moment on the part of the wing outboard of the fuselage, calculated
by the method of reference T or the method of this paper (described in
a subsequent section), may then be added to the 1ift and moment on the
fuselage to get the total 1ift and moment on the combination.
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Outline of Method for Calculating Iift on Wing in
Presence of Fuselage

The 1ift distributlon on the wing will be calculated by equating
the downwash angle induced at the three-quarter-chord line by the
horseshoe vortices centered on the quarter-chord line (see fig. 5) to
the local angle of attack on the three-quarter-chord line at several
points along the span. Since the boundary conditions on the fuselage
are not completely satisfied by the vortex-image system of figure 5 in
the region near the bound vortex, it is necessary to resort to certain
approximetions in calculating the downwash. Calculation of the exact
values of these downwash functions would require the calculation of the
additional potential, which involves a great deal of time and effort,
but if such calculations were made the values could be used directly
in the present method and the restrictions suggested in the following
paragraph would be eliminated.

The approximations described in the following sections improve as
the longitudinal distance from the downwash points to the bound vortex
increases, so that this method is considered to be best suited for con-
figurations having a fairly small ratio of diameter to root chord, say

for straight wings with —2i20eter <1 .13 Por swept wings with
Root chord ~ 2

Diameter <l = caicuiations of the aerodynamic loading on a wing and
Root chord = 3
tip~-tank combinastion, by a method corresponding to the one described

herein with the downwash points located about 1 tip~tank diameter behind

the bound vortex £%§E§§9£E== L) have been found to yield results in
p chor
good general agreement with experimental results (ref. 9).

Downwash near bound vortex of wing.- Although the boundary condi-
tions are satisfied completely only at infinity, the tralling legs of a
single palr of horseshoe vortices and images also satisfy the boundary
conditions on the cylinder 1n the plane perpendicular to the cylinder
axls which passes through the bound legs of the horseshoe vortices. Imn
addition, the boundary conditions on the cylinder are satisfied com-
pletely by the semi-infinite vortex-image system everywhere in the plane
of the horseshoe vortex. Since the boundary conditions on the cylinder
are satisfied exactly at the points noted, and are partly satisfied
everywhere else, 1t will be assumed that the downwash due to the trailing
vortices may be calciulated approximately, at least in the plane of the
horseshoe vortex, without introducing any correction factor.

However, & correction factor must be used in calculating the down-
wash due to the real and image bound vortices which have the greatest
tendency to violate the boundary condition of zero velocity normal to
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the surface of the cylinder. In the plane of the wing, along a line
parallel to the bound vortex, the effect of the cylinder on the vertical
flow induced by the bound vortex is assumed to be the same as its effect
on a two-dimensional uniform rectilinear flow, so that the downwash
induced byathe bound vortices on that line is increased by the fac-

a

tor 1 + —.

¥g2

The downwash angle at a point y = Yg and X = Xg (shown in
fig. 4) is then written

_ 10 Eil_) a?
%—GﬁgngDIMJM+q@me+gg (18)

where the downwash factor due to the trailing vortices F, and the
downwash factor due to the bound vortices Gp may be calculated by
the Biot-Savart law.

The function Fp 1is the sum of four terms, each having the form

B X - % 7
1 i +1]-

Yn - ¥ 1 2 — —
yn va * ‘/(yn - ya + l) + (xa = x-n)2 ]

1 Xg = Xp
—y_n—-y—a.-l

+ 1

Vkih - Ya - 1)2 + (Xg - Eh)e

p—

(the term corresponding to the tralling legs of the horseshoe vortex
centered at y = yn), and the function Gp is the sum of four terms,
each having the form

L [ Fa-Farn Vo - Ya -1

Xg - xnljk§h - ¥Ya + 1)2 + (iﬁ - ih)e VQ?h - Ty - 1)2 + (fﬁ _ Eh)a

(the term corresponding to the bound leg of the horseshoe vortex centered
at ¥y = ypn).
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Scheme for calculating spanwise 1ift distribution on wing.- The 1lift
distribution on the wing is calculated by equating the downwash angle on
the wing induced by the vortex-image system to the local angle of attack
on the three-quarter-chord line of the wing at m points as in reference T.
Thus equation (18) is written for each of the m stations, and the simul-

CCZ

taneous equations can then be solved for (73r>n at m points on the

span. The + marks Iin figure 5 indicate the polnts where the downwash
is equated to the local angle of attack.

The effective angle of attack ag 1is equal to the geometric angle

of attack of the wing g plus the angle of attack induced by the
fuselage:

Qg = O + ap! (19)

and

y
0

a2

2
= ap a_z. (20)
N

where ap 1s the geometric angle of attack of the fuselage and the fac-

2
tor 1 + §—§ takes into account the increase in the vertical velocity
Ya

of the free stream in the neighborhood of the fuselage as calculated by
assuming the fuselage to be an infinite cylinder in a two-dimensional

uniform rectilinear flow of magnitude Ugar.

The effect of finite fuselage length (referred to in ref. 7 as the
"inflow effect") must be included seperately by multiplying ——t at
Cc

each spanwise station by the factor 1 + 2¢, where € is the ratio of
the local increment of longitudinal velocity due to the fuselage to the
free-stream velocity. As shown in reference T, the factor 1 + 2¢ is
used to account spproximately for the small increase in dynamic pressure
of the flow over the wing due to the increase in the local longitudinal
velocity near the surface of a fuselage of finite length.
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Outline of Method for Calculating Downwash

The downwash calculations made in this section are for the case of
the wing at an angle of incidence with the fuselage at zero geometric

angle of attack.

The accuracy of the calculated results must be verified

by experimental results; however, by comparison with results of downwash
calculations for the wing alone, the results of the calculations for the
downwash behind the wing-fuselage combination masy serve to glve useful
Information regarding the effect of the wing-fuselage interference.

As was noted previously, the boundary conditions on the wing-fuselage
combination are completely satisfied by the vortex-image system infinitely
At a great distance behind the wing, therefore,
the theoretical value of the downwash can be calculated accurately for

far behind the wing.

e glven spanwise 1lift

distribution.

This calculation is simple, and the
results msy be useful for certain applications.

However, the approxima-

tions made in the preceding section for calculating the downwash at the
wing three-quarter-chord line may give more accurate results for the
downwash in the plane of the wing in the region nearer the bound vortex.

If the 11ft distribution on the wing is known, say from the method
of reference 7 or the method outlined in this paper, the downwash angle

in the plane x

» mgy be calculated by adding the downwash due to
each pair of tralling vortices and their images.

Thus, from the Biot-

Savart law end flgure 4, the downwash angle ag &t the point y = yq,

Z = Zg, 80d X = o

is given as

ce
1 Z Z)
= -_ F 21
Ug, DAS¥ 4 ( T /y n ( )
where
?n".’)-’a,"'l yn'ya"l §n+3’.a+l
Fp = - 5 + -
(?n"ya*'l)z""iaz (yn"‘?a“l) *'E.a,2 (fn+'y'a+l)2+—a2
— B2 -
- Vo - 2=+ 1 ya-f—e-l
Yn + ¥a - L N In _ In "
("+_--l)2+}'Z2 — B2 2 N 2 2
Yn ¥ Ve & (ya-2+1) +%2 (Fo--1) +24
In yn
_ 2 g2
Fa+ 2 +1 Vo + o -1
7o - T (22)
— a2 2 = a 2 _o2
Yg+t=—=+1) + 24 Jg + = - + 2g
In In

and (ecy/e), is the

loading coefficient at

station &y,.
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The representation of the weke by discrete vortices is satisfactory
if the downwash is calculated at points helfwey between the trailing
legs (ya = yn). The values calculated at these points may be faired to

obtain a continuous spanwise distribution of downwash angle.
CONCLUDING REMARKS

For the purpose of calculating the longitudinel loading on the
fuselage in subsonic flow, a midwing wing-fuselage combination with a
fuselage of circular cross section has been represented by a system of
discrete horseshoe vortices and images. By using this simplified
mathematical model, or the extension of it glven in an appendix for
nonmidwing configurations with fuselages of arbitrary cross section, a
method is derived for calculeting the 1ift on the fuselage induced by
the wing. The method is 1llustrated by a numericel example. This

"{nduced 1ift" can be added to the 1ift on the part of the wing out-
board of the fuselage and the 1ift on the fuselage due to the upwash
induced by the wing to get the total loading on the wing-fuselage com-
bination.

In addition to the method for calculating the induced 1ift, which
is theoretically rigorous, methods for calculating the downwash far
behind the wing and for calculating the spanwise 1lift distribution on
the wing for midwing configurations with axisymmetric fuselages are
outlined. Imn calculating the spanwise 1ift distribution on the wing,
approximations are made to account for the effect of the "additional
potential, so that the method is not rigorous. However, the effect of
the additional potential may easily be incorporated into the method
when it is calculated.

Langley Aercnautical ILaboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., November 13, 1952.
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APPENDIX A

CAICULATION OF INDUCED LIFT FOR CORFIGURATIONS WITH

ARBITRARY CROSS SECTION AND WING LOCATION

This appendix indicates how the relation, given in reference k4,
between the magnitude of the induced 1ift on a cylindrical fuselage
and the 1ift distribution on the wing can be generalized so that a
simple equation can be obtalned from which the longitudinal center of
pressure of the induced 1ift may be calculated. Reference 4 shows that
the following relation will hold between the total 1ift induced on a
cylindrical fuselage of arbitrary cross section and the 1lift distribu-
tion on a wing in the horizontal plane 2z = Constant:

Ly =fw PUGI(y)e(y)dy (a1)

vhere y is the lateral ordinate, I'(y) is the spanwise distribution

of circulation, g(y) is the increment in the flow velocity normal to

the plane of the wing produced by a unit uniform transverse flow normal
to the cylinder axis, and W indicates that the integral is taken over
the span of the exposed wilng.

In order to generalize equation (Al) so that the center of pressure
of the induced 11ft on the fuselage can be calculated, it is convenient
to consider wing elements to be represented by horseshoe vortices having
bound legs of vanishingly small length 8y, lying in the horizontal

plane z = Constant with trailing legs parallel to the x-axis (longi-
tudinal axis). On a cylinder having its exis coinciding with the x-axis,
these horseshoe vortices will each induce a 1ift of masgnitude BIT,
defined by

ntoyn

dLp = PUoI(y)e(y)dy (a2)
Yn-o¥n

where Yy, 1s the lateral location of the center of the bound leg. Tt
can be shown that the longitudinel location of the center of pressure

of thls induced 1ift BLp 1is at x,, the same longitudinal location as
the bound leg of the horseshoe vortex. The proof is exactly the same in
all essentials as that presented in the body of this paper for the case
of a circular cylinder with a finite horseshoe vortex located in the
plane z = O.
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From these considerations, it is clear that the total induced 1ift
on the fuselage and its longitudinal center of pressure Xep Can be
given as follows:

Le

i

PUg L r(x,y)e(y)as (A3a)

pUo ./; x7(x,y)e(y)ds
Le

Xcp (A3Db)

where 7(x,y) is the strength of an infinitesimal horseshoe vortex
centered at (X,y), and the integrals are to be taken over the exposed
wing surface S. It may be noted that, vhereas equation (A32) is valid

at all subsonic and supersonic Mach numbers, equation (A3b) is valid only
at subsonic Mach numbers.

Equations (A%a) and (A3b) represent, in general, the desired equa-
tions for the magnitude and center of pressure of the induced 1ift on a
cylinder in the presence of a lifting surface. 1In order to illustrate
their application, they will be developed for the case of a circular
fuselage with a lifting line of horseshoe vortices and will be reduced
80 that the simple computational procedure of appendix B can be used.

For a circular cylinder of radius a, g(y) is given as

gy) = 22 = 28)

(y2 + 22)2

When the wing is represented by a lifting line, equation (A3a) has the
same form as equation (A2) and the increment in 1ift ALp due to two

horseshoe vortices of strength I' having spans 28 and located in the
horizontal plame z =2z at +yn and -¥n 1is

ynts
2 -
2pU,T & (ye zhz) dy

2
yn-s  (y2 + Zh2)

ALg

2 2 2

ccC - 8 - Z

aqs(_l) - Yn b (a)
¢/n

c 2
zt + 22p2(yp2 + 82) + (yp2 - 82)

It may be noted that for the midwing case zp = 0, equation (Al) is
identical to equation (6).
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TLIUSTRATIVE EXAMPIE OF INDUCED-LIFT CALCULATION

A numerical example 1s given to illustrate the method presented in

the body of the paper for calculeting the 1nduced 1ift

on the fuselage.

Geometric Characteristics of Configuration Used

in Mlustrative Example

The plan view of the wing-fuselage combination is
same as shown in figure 5. The geometric data are:

Aspect ratio . .+ . ¢ ¢ o 0 e e i d h e h s e e e e e
Taper ratio . ¢« ¢ ¢ v ¢ v v ¢« ¢ e 0 e e e e e e e e s
Sweepback, AEZ « « « ¢ ¢+ e v e e s n e e e e e e e
B o i v 4 e e e s e s e e e e e e e s e e e e e e e
s¥ . s e s e e s e e e s e s e e e e s e e e

esgsentially the

s e .. B8
e . .05

S 11
.« .+ ... 0.10
« ¢ ... 0.05

Spanwise Loading on Wing in Presence of Fuselage

The spanwise 1ift distribution on the wing in the presence of the
fuselage for a high-midwing configuration, tabulated below and shown in

figure 9, was obtained by the method of reference T.

It 1s qualitatively

correct for the pure midwing case and is used to illustrate the procedure

for obtaining the induced 1ift on the fuselsge and 1ts

lateral distribu-

tion and longitudinal center of pressure. The 1ift distribution on the
wing in the presence of the fuselage, plotted in figure 9, is tabulated

as follows:

oo | (&)
S IR % /n
1 0.15 0.15 0.369
2 .25 .25 .366
3 .35 .35 -356
L R A5 .338
5 -55 55 .319
6 .65 .65 .300
T .75 .75 .266
8 .85 .85 241
9 .95 .95 .200
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Longitudinal Distribution of Imduced Iift

Equation (6), which gives the 1ift on the fuselage due to a single
pair of horseshoe vortices at (xn',tyn') and their images, can be
written

cc 2
e
a c/n y-n’ - 5‘2
The total 1ift Lg/qS is then
cc
5 3 (),
Qs n-\C/ny,'2-s'?

The longitudinal center of pressure referred to the Intersection of the
quarter-chord line and the fuselage axis of symmetry (see fig. 5) is

ccy 2 1
Xep' = > (5 PR )

E <cc 1) 2
n ynre 2

— 1
n c - 8

The computed values of Lg/gS and xcp' are obtained from the values
presented in the following table:

2 ccy 2 cey 2 ;
o 2 2 = 2 o po 2 o n
Yn' -8 C/n¥yn "~ -8 C/nyn " -8

1 1.000 0.369 0.554
2 .333 122 .305
3 .168 .060 . .210
Ly 100 . .03k4 ..153
5 .066 .021 116
6 .048 .01 .091
T .036 .010 .075
8 .028 .007 .060
9 .022 .005 .048

> = o0.642 > =1.612°
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— 0. = OOO 2
as 05‘§§:'< nyp'e 12 g

CZ> 2
T n yn:2 - 812

| f

figure 11. The location of Xep is also shown.

are plotted as vectors in

c
The values of s*<

Lateral Distribution of Induced Lift

Bquation (5), which gives the lateral distribution of the induced
1ift on the fuselage due to a single pair of horseshoe vortices at
(xn',%tyn') and their images, can be written

de)
V 2 VA
A(ay— _ g<°°1> peg-l 20m’ -8V -y™ Ly 20’ + sV - y'e
¢ "\ T/n (va' - 8")% -1 (vp' +8')% -1

(BY)

The total 1ift at a station +y' on the fuselage is then

dLe 2 ccy 2(yn' -~ 8")W1 - y'2 1 2" + 81 -y
- = £ —_ tan—1 - tan~
n n

- 2
¢ (vn' -8 -1 (yp" +8')° -1

(B5)
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The value of de{éy at ty' = 0.25 is calculated from the values in
ac ’

the following table (the lateral 1ift at any station ty' can be calcu-

leted in a similar menner):

®© @
Bl = TR o+ R ) () ),

nit

1 172 =
(yn' -8)" -1 (' + s')2 -1 ¢

1 1.571 0.918 0.241
2 .918 .633 .104
3 633 481 054
4 481 .387 .032
5 387 <324 .020
6 .32 .279 .01
T 279 .2l .010
8 24, 217 .007
9 .217 .195 .005

S =o.u87

Thus, at y' = 0.25,

dLe/dy

qc

= 2(0.187) = 0.310

The complete lateral 1ift distribution is shown in figure 10.
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Figure 1.- Combination of horseshoe vortex and infinite cylinder.
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Figure 2.- Illustration showing superposition of infinite trailing vortices
on cylinder and horseshoe-vortex system.
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Sweepback angle, 45°; taper
ratio, 0.45; A = 8; a* = 0.10.

Figure 5.- Cylinder-wing combination.
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(b) Infinite-vortex—ellipsoid configuration.

Figure 6.~ Illustrations of sphere with infinite vortex and ellipsoid
with infinite vortex.
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Flgure 9.~ Lateral 11ft distribution on the wing elone end on a wing-
fuselage combination. Sweepback engle, 45°; taper ratio, 0.45;
A = 8; a¥ = 0.10.
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Pigure 10.- Lateral distribution of induced lift on the fuselage in the
presence of the wing. Bweepback angle, 457; taper ratio, 0.45;
A = 8; a* = 0.10.

L€

M9



0001 ~ ¥3-9-1 - SWurT-YOYH

ge

04r o o
- A — Caicuiafed with fuseiage effect
o i on wing
<;-|U - A A — Calculated without fuselage effect
= 03 - f on wing
2 b |
2 i l‘/—- Resultant located at
S -02_‘ PO center of pressure
o t
c I
o I l
g oip L
@ I |
= I
< : T R
6 0 | * G A A i . .
Wing center saction Tip section}
_"cz/‘:-’::::F Root section it
L 1 1 | ] | ] ] 1. | |
o I 2 3 4 5 €6 T 8 9 W

Dimensionless longltudinal ordinate x!

Figure 1l.~ Iongitudinal distribution of Induced 1ift on the fuselage in
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A= 8; a* = 0.10.
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